Lawson, J.D. and Weedon, D.S. (Eds.) 1992. Geological Excursions around Glasgow & Girvan. Geological Society of Glasgow. This material is part of the series of excursion itineraries published by the Geological Society of Glasgow. Find out more on the Geological Society of Glasgow website.
Excursion 16 Upper Old Red Sandstone of the Firth of Clyde
Key details
Author | B.J. Bluck |
Theme | Recognition of different alluvial deposits in the Upper Old Red Sandstone. |
Features | Characteristics of channel-bar sediments and features distinguishing them from floodplain-floodbasin sediments; the upward coarsening unit, and its significance in recognition of the deposits of river bars; the diverse types of alluvium and the use of related channel bar and floodplain sediment to determine the nature of the alluvial sequence; the significance of the range of alluvial types in terms of environmental and tectonic controls; recognition of the scale of rivers and its significance in palaeogeography; megasequence stratigraphy and its meaning in terms of basin type and evolution; the structure and significance of carbonate palaeosols (caliche) and the stratigraphical evolution of the Upper Old Red Sandstone in the Firth of Clyde. |
Maps | O.S. 1: 250 000 Sheet RM 3 Western & Central Scotland 1: 50 000 Sheets 63 Firth of Clyde
B.G.S. 1: 50 000 Sheet 29 Rothesay 1: 50 000 Sheet 22W Irvine 1: 50 000 Sheet 30W Greenock |
Terrain | Coastal pathways and low coastal cliffs. Some walking on rough and sometimes slippery coastal sections. |
Distance and Time | c.30 km from Localities 1–10; 6–8 hrs. Most localities are near the roadside but Localities 5–8 will require a walk of 2 km. Short itinerary, localities 3, 5, 6, 7, 10 ; time 4 hrs. Car travel is assumed in these times, but at the time of writing there is a bus service which passes close-by all localities. |
Access | No restriction |
Introduction
a. Stratigraphical setting of the sequences
The Upper Old Red Sandstone deposits of the Firth of Clyde range in thickness from c.4 km in the region of Helensburgh, to <100 m in the southern Midland Valley. Their age is not known precisely , but they are older than the Carboniferous lavas which rest on them and younger than the oldest rocks (upper Lower Devonian) of the Strathmore syncline, upon which they rest.
The rocks comprise a series of mega-sequences which fine upwards, beginning with coarse conglomerates and ending with a blanket deposit of quartz-rich sandstones and comstone (caliche), the latter being themselves overlain by the Clyde Plateau Lavas
The general tectonic regime within which the sediment has accumulated has been discussed by Bluck (1978, 1980), who favoured deposition in an extensional basin which opened along a series of normal faults. Each fault created in the basin a megasequence beginning with conglomerate and ending with sandstones and caliche. In addition, as the basin extended to the SW, younger faults were created and younger megasequences produced at the foot of them (
b. The structure of alluvial deposits
The structure of a wide range of alluvial deposits can be seen in this region of the Firth of Clyde, and this introduction merely sets out to discuss some of the most common types so that their significance can be better appreciated at outcrop. Details of the interpretation of the alluvial sequences will be discussed at the appropriate localities, but there are some general points which need to be stressed about the general way in which ancient alluvium should be critically examined and assessment made of the significance of its presence at any one locality.
The processes which transport and deposit sediment in terrestrial environments generally vary in characteristics with their distance from source. Areas of sediment accumulation close to source are dominantly under the influence of the steep slopes and the often abundant supply of coarse sediment. Where there is high relief, the area of drainage is fairly small, the supply of sediment abundant and the rainfall occurs in heavy bursts, so that alluvial fans are likely to form. Depending on the ratio of sediment to water, these may be sites of mass flow deposition, where a chaotic jumble of sediment is laid down, or sheet-flood deposition, where shallow sheets of sediment-laden water spread out over the fan surface to deposit thin, laterally persistent, gravel beds. Both mass flow and sheet flood deposits can be seen at Localities 1 and 7.
When the area of drainage expands, a more regulated flow is attained in a longer and more stable channel system. In areas of high sediment discharge, and/or high channel slope, there is a non-sinuous wide zone of channels (braided river) flanked by an often poorly defined floodplain which is subject to flooding and sediment accretion only during high flow stages. Deposits from these river systems comprise many well defined gravel bars which dominate the channels and which grow generally in a downstream direction. The flood plains bordering these charnels are frequently liable to flooding and are normally devoid of fine sediment, which has either been eroded away or was not deposited from the fast-flowing flood waters. Braided sediment bars of this kind are illustrated at Locality 8.
Farther away from the source where there are often slopes of lower gradient, drainage is often confined to one main, fairly deep channel which can be either straight or sinuous, flanked by a well defined floodplain which, if very extensive, may form a floodbasin. The channels are characterised by many sediment bars which either form the central zone or are attached to one of the banks. With increasing depth of the river the bars become very thick units of sediment which reach down to the deepest parts of the channel and up as far as the top of the bank. Thick sediment bars in confined channels can be seen at Localities 4, 9, 10.
Another result of the deeper, confined flow of the river is that the floodplain is quite distinct from the channel, and is typified by flat sheets of sediment which overspill from the channel during flood events. On river systems we see around Glasgow today the floodplains are grassed over, but in Devonian times plants were not well developed and the climate was fairly arid, so floodplains were bare. Where the floodplains are well drained and not subject to a great deal of flooding, as when the rivers are near low upland areas, a particular palaeosol may develop on them which is typically found in arid and semi-arid regions today. This 'soil' is called caliche or cornstone, and is made up of carbonate. It is particularly well seen at Locality 2. Where there are wide floodplains with a good supply of flood sediment and a dry windy climate, then dunes may form. The floodplains and floodbasins associated with the deep rivers at Seamill (Locality 11) have dune deposits in the floodplain sequences. It is a characteristic of most river systems which have a source separated from the basin, that the grain size of the sediment bed-load decreases downstream. This grain-size difference, coupled with the factors discussed above, result in the alluvial facies acquiring a wide range in structure; there is not only the diversity associated with the differences between floodplain and channel-bar sediment, but also the differences in both these regimes when traced from source. These differences in the structure of alluvium are very clearly demonstrated in the sediment of the Clyde coast.
Channel-bar deposits, despite their heterogeneity in structure, are all united by one characteristic: they comprise units of sediment which coarsen upwards from a recognisable base. This coarsening upward is brought about by the presence of an areal grain-size segregation within the channel
Locality 1. North end of Lunderston Bay [NS 202 748] : Breccias with Dalradian clasts (Figure 16.4)
Parking is quite easy here, as there is a large car park on the west side of the road. The hills to the NE above the garden centre are in thick caliche and white sandstone. They belong to the upper part of the Upper Old Red Sandstone sequence, and the breccias which occur on the shore here and in the raised beach along the road are stratigraphically below these caliche beds. The breccias are therefore also high in the sequence, and imbrication and cross stratification show a dispersal towards the SE, away from the Dalradian block to the NW. The breccias contain slates and psammitic clasts which are very similar to the local Dalradian, and Bluck (1980) believed that they were from this source. The clasts show convincingly that the Dalradian block was in contact with the Midland Valley by Dalradian times and that it was in sufficient relief to shed debris to the south.
These breccias are laid down in sheets which can be traced for some distance over the outcrop. They are probably the result of sheet-flows, where sediment-laden water disperses over a surface which has little relief. The flat shaped clasts are well oriented and in some instances can be seen to be aligned in a swirling pattern suggesting that the flow was sometimes quite 'viscous': in this case the breccia sheets may be thought of as mass-flows.
Locality 2. Inverkip [NS 200 718] : Caliche (Figure 16.4) , (Figure 16.5) , (Figure 16.6)
This exposure occurs on the shore just below the car park (with toilet, but not open continuously) on the headland, and can be reached at high tide, although it may be examined to much greater advantage at low tide. The rocks comprise white quartz-rich sandstones, red muds tones and carbonate beds (caliche). The sandstones are cross stratified and have occasional clasts of a fine, dense carbonate which resembles the caliche layers to be discussed below. These sandstones are channel deposits of small-scale river systems which are either at some distance from source or are near to low-lying source blocks which were yielding very little coarse sediment. The interstratified mudstones and carbonates are the overbank floodplain deposits to the same or allied systems.
The caliche is preferentially found in the muds tones of the floodplains, although it can also be seen in some of the sandstone units. The most complete profile can be seen at the NE end of the exposure, where sparse, nodular carbonates are replaced upwards by elongate carbonate pillars and finally by massive, irregular carbonates (
Caliche occurs when water, usually from rainfall seeps down through the surficial layers of sediment only to return towards the surface because of the intense evaporation at the surface. It therefore characterizes arid or semi-arid regions of the world where the rainfall is low and the ground surface is hot. Carbonates are dissolved as the waters pass down and are then precipitated as they migrate up towards the surface (
Caliche grows very slowly, normally far more slowly than the rate of sedimentation. It only develops on fairly stable surfaces, such as river floodplains, rather than channels which have mobile sediment which is not stationary long enough for caliche to develop. The depth to which the rainfall percolates below the surface is fairly constant, and the depth below the surface reached by the return flow is fairly constant too, so that there is a distinctive zone in which the nodules grow below the surface (
This section occurs towards the top of the Upper Old Red Sandstone, where there are many such profiles, some of which are > 5 m thick. On the basis of other evidence there was slow subsidence in the entire Upper Old Red Sandstone basin across the Midland Valley towards the end of its development and floodplain surfaces were exposed for a long period before being buried. For this reason caliche surfaces are well developed in floodplain sediments at this time and can be traced for kilometres where the oucrops are favourable; the presence of thick caliches is an indication that the sequence is at the top of the Upper Old Red Sandstone.
Locality 3. Wemyss Bay [NS 189 699]
Unconformity, megacycle and faulting
- Unconformities within the Upper Old Red Sandstone.
- The initiation of an upward fining megacycle and the sequence of facies associated with it.
- Faulting.
There are 4 sub-localities which are used to illustrate these points.
a. A cross stratified conglomerate rests discordantly on bright red sandstone. The red sandstone has been extensively used for building, and to the north of this outcrop a small harbour has been quarried into it. The sandstones are best seen in the low cliffs to the north of this quarry, at the foot of the wall which runs along the road. Here they comprise alternations of flat stratified, rippled and mudcracked sediment and cross stratified sandstones. The environment of origin of this sandstone unit is uncertain; it is probably aeolian, with the flat stratified irregular beds being interdune deposits (see Locality 9).
b. The conglomerates have large-scale cross strata which dip towards the NNW. They are associated with more gently dipping strata some of which dip at low angles to the SSE. These are backset beds, and in combination show that these sediments were deposited from gravel-dominated sediment bars the height of which was equal to the thickness of the foresets and backsets
The conglomerates contain a wide variety of clasts which include white vein quartz, quartzite, schist, amphibolite, acid-intermediate volcanic rocks, and very few granites. Many of these clasts are well rounded and those of the more durable lithologies such as vein quartz and quartzite are probably in their second or more cycles.
c. These beds are discordantly overlain by cross stratified pebbly sandstones which contain the same assemblage of pebbles as the lower conglomerate. This overlying conglomerate has upward coarsening sediment units (see
The beds are repeated by two faults, one of which can be seen at (d) in
Interpretation: This is the lower part of an upwards fining mega-sequence which has been cut by a number of roughly N–S fractures. The sequence ends with caliche and sandstones which can be seen in the region of Leap Moor.
Locality 4. Shore at Knock Castle [NS 1913 6303]
Cyclical sediments of channel-bars and floodplains
The exposure under consideration is 330 m north of the lodge at the entrance to Knock Castle and is situated below a car park on top of the low-lying cliff and can be easily identified by its presence beneath a wall. Here a coarse member, resting erosively on a fine member, begins with units of upward coarsening sediment which are 0.5–1.0 m thick. In its upper part, the coarse member comprises a unit which is a level of organization above that of the basal, in that it comprises four different lithologies
b1 A wedge of ductile folded and refolded sandstone which thins to the east;
b2 A unit of cross stratified sandstone in the middle of the outcrop, which also wedges out to the east;
b3 A sheet of coarse pebbly sandstone which underlies the wall and caps the outcrop to form an upward coarsening unit; b4 A coarse grained unit of uncertain affinities.
All three units, b1–3, are in part transitional or interfingering.
An explanation for this outcrop
- The cross strata dip towards the NW indicating that the flow was in that direction.
- With the divisions b1–3 being transitional or interfingering, then the coarse sediments of b3 are partly equivalent to the finer sediments of b2 and bl, and all divisions were therefore laid down at the same time. The palaeoflow is towards the NW and the whole outcrop becomes finer in that direction, i.e. downflow, so that there was on the river bed a pile of sediment which became finer downstream. This type of size-segregation within alluvial channels is typically found in sediment bars (see Introduction).
- The sequence coarsens upwards indicating that the sheet of coarse sediment of the upstream margin (to the SE) has migrated over the fine to give an upward coarsening unit (compare
(Figure 16.3) ); and the direction of coarse sediment migration was in the direction of stream flow. - Such mechanisms of sediment migration and the sequences they produce are typically found when bars of sediment migrate downstream. Sequences like this can be seen, for example, now forming in the End rick Water.
- The whole sediment sequence thickens downstream and this may be due either to the bar migrating into deeper water, or the whole sediment bar building up on the stream bed. It is clear that if this explanation applies then the minimum depth of the river is given by the height of the bar, which in this instance is c. 3 m
Locality 5. Farland Head [NS 178 484] : Faults (Figure 16.9)
There is a free car park at the first farm entering Portencross. The exposures lie on the coast in front of the car park and extend to the south. Walk south beyond Sandy's Creek to the begining of the sandy beach of Ardneil Bay
To the west are fault bounded, sheared grey siltstones and lithic arenites at Sandy's Creek. These beds are c. 501n thick, and on spore evidence are considered to be Lower Devonian or possibly Late Silurian in age (Downie and Lister 1969).
The Upper Old Red Sandstone rocks of Ardneil Bay do not appear within the Upper Old Red Sandstone sequence to the north where the basal Upper Old Red Sandstone rests on the Lower (Locality 7). The beds in Ardneil Bay belong to a group of sandstone which extends at least to Ardrossan and was built by a large, contemporary river system (Localities 9, 10, 11). If these sandstones once overlaid the sequence north of Portencross (as seems probable) the throw of the fractures at Arneil Bay and Sandy's Creek would therefore be substantial, since they fault out not only the Lower Old Red Sandstone sequence but also the whole of the upward fining megasequence at Portencross. The nature of the faulting is not clear, but elswhere in the sequence there is evidence for much high angled reverse faulting (see
Locality 6. Car park: Lower Old Red Sandstone (Figure 16.9)
These rocks form the foreshore and the raised beach platform from the car park to the castle. They are a brown-red colour and are thought to belong to the Lower Old Red Sandstone. They comprise alternations of flat stratified and cross stratified sandstones and conglomerates. There is a wide variety of sedimentary structures to be seen in these deposits: sedimentary lineations, mudcracks (seen in section as pillars of sand in shale but as polygonal surfaces in plan), and a wide variety of cross stratification. Some of the cross strata are in tabular sheets with mudstone drapes over the foresets and mudstones at the base (bottom sets) and rippled strata at the top (top sets). These deposits resemble the flat-topped bars of sandy sediment described from recent braided stream deposits, representing a facies not depicted in
The interstratified conglomerates which can be readily seen on the northern margin of the outcrop near the castle, comprise clasts of mainly volcanic rock which include andesite and andesitic tuff as well as basic volcanic rocks. Clasts of a green sandstone present here are particularly abundant further up in the sequence.
The palaeoflow for these sediments is from the south in which direction we can infer from the composition of the sandstones and conglomerates there was a source made up of dominantly volcanic rock.
Locality 7. Northbank
Unconformity between Lower and Upper Old Red Sandstone and an upward fining megacycle
This basal unit fines upward and is replaced by muds tones with mudcracks, minor caliche beds and thin conglomerates and sandstones. These strata form a distinctive hollow on the shore and are succeeded to the north unconformably by a sequence of cross stratified conglomerates and sandstones. These conglomerates are particularly rich in green sandstone clasts.
Locality 8. Hunterston
Gravel bar of a braided river
There are three lithofacies to be seen at this outcrop
The sandstone is overlain by the cross stratified conglomerate and itself wedges out to the south where the overlying bed replaces it. Further to the south the cross stratified sheet of conglomerate is replaced gradually by the overlying flat to gently dipping alternation of sandstone and conglomerate (see
Bluck (1986) has interpreted these rocks in the following way
The cross stratified conglomerate (c) represents the successive lee faces of a bar which migrated to the north. On the upstream margin of this bar were the back sets and top sets of the flat stratified unit (d), and on the downstream margin were the fine grained sands of the bar tail (b). The lee face over the bar climbed over the tail to produce an upward coarsening sequence as seen at Locality 3. The lithofacies (a) represents the channel deposits below the bar.
Locality 9. Bastion Craig: Channel sand body (Figure 16.12 )
This locality at Bastion Craig may be reached by foot from Farland Head or by car by driving past the golf club and down to the shore. On no account should buses go down this road. They may park elsewhere e.g. just south of Seamill where parking is suggested for Locality 11. This part of the coastline is made up of low ground underlain by fine, soft sediments, of large-scaled cross-stratified sandstones and alternations of red mudstone and sandstone and upstanding outcrops of red cross-stratified pebbly sandstone.
Bastion Craig is a sand body the top part of which comprises, at its western margin, pebbly sandstone and conglomerate (C5) , and at its eastern margin mainly sandstone (C3) overlain by pebbly sandstone (C4). With the dispersion of sediment being from SW to NE the coarse sediments belong to the head and the fine to the tail, but as with other bars, the coarse head has migrated over the fine tail to give an upward coarsening sequence and the gradation between the lithofacies C4–05 is seen at (b); and between C4 and C3 at (a). At (a) it is possible to trace this gradation by reference to bands of conglomerate, where between two conglomerate units C4 grades downstream into C3. The whole structure is best viewed from a vantage point near the golf course where this latter gradation in facies is particularly well seen
The mid-part of the bar comprises trough cross strata, sometimes organised into small upward coarsening units, and the tail of the bar comprises planar cross strata which wedge out towards the west
Locality 10. Bell Stane [NS 190 476]
Floodbasin deposits, dunes overbank deltas
F1, Thinly stratified (1–10 cm) alternations of siltstone and rippled sandstones. These are interpreted as thin overbank sand sheets dispersed out of the channel either during a slight flooding or the distal ends of thicker sand sheets such as described under F2, or simply lacustrine sediment accumulated during periods of flooding.
F2, Cs cross stratified, pebbly sandstone sheets which occur amongst 1 and represent crevasse splays. These occur quite near to the bank of the river and were produced during times of flooding in the main channel and breaching of the river bank followed by the spread of sand sheets onto the adjacent floodbasin area. They can be seen at several positions as marked on the map of the foreshore.
F2, De large-scale sand sheets which are upward coarsening and contain abundant wedge-shaped cross strata. These could be confused with channel deposits (ch) but are thought to be deltas of sand produced when there was a strong overbank breach during flood so that the floodwaters and their entrained sediment filled the lakes and other bodies of standing water which was in the low ground in the floodbasin
F3, very large scale, often trough-like, cross strata in soft friable and pebble-free sand. These lithologies are thought to be the lower parts of aeolian dunes which transported sediment on the floodbasin when it had dried out. This suggests that the floodbasin and river system existed in a fairly dry climate. Beneath these large-scale cross strata are often very irregular red sandstone and claystone beds with indistinct ripples. These are interdune sandstones and mudstone which occur between the dunes and are therefore more likely to be buried and preserved than any other of the dune lithologies.
Locality 11. Seamill
Large-scale sand body
There is a prominent pebbly sandstone unit on the foreshore north of the main outcrop and south of the stream. This sandstone is easily recognised by the presence of concrete all along its outcrop (there is a pipe-line buried here). In the notation for these lithofacies this is Cl and may belong to the same bar-channel system as the main outcrop being discussed.
A detailed examination of the outcrop shows a number of important Features at (bi) the trough cross strata of C4i interfinger with the planar cross strata of C3. At (di) a mass-flow of sandstone has probably been produced during the de-watering of a sandstone at (dii).
The cross strata dip in the same direction as the lithofacies change and from these observations a number of significant points can be made
The whole development of this bar complex is similar to that described at Localities 4 and 8, but because now the scale of both the bar and the river is much greater so the lithofacies are thicker, more complex and the transitions take place over a greater distance.
Trough cross stata in the main part of the outcrop are beautifully exposed in 3-D: they are themselves arranged in upward coarsening units which can be as much as 1 mthick. The top of this sequence is gradational upwards into overbank deposits exposed on the rock platform to the south and which comprise very large aeolian dunes and interdune sediment as described at Locality 10.
These sediments were laid down by a river which was at least 6 m deep, and was fairly distal, being in its floodplain-floodbasin reach (see
The palaeogeography of the whole North Atlantic region for Devonian times involved a large sea to the south, in England, and very high mountainous areas to the north in Greenland and Scandinavia. It is probable that the large river which built these Upper Old Red Sandstone bars at Seamill drained these northern mountains, was diverted through the Midland Valley and then drained southwards through the North Sea to the Devonian coast in the south.
Summary of excursion and significance of observations
1. In terms of the distribution of alluvial facies as shown in
2. The clasts in the conglomerates at Portencross differ greatly from those at Wemyss Bay. It is therefore inferred that the nature of the source which gave rise to these sediments also differed. However both were deposited by river systems draining areas from the south: they share the same dispersal direction but they clearly do not belong to the same dispersal system, so a source block is inferred to have existed between Wemyss Bay and Portencross. It is on this and other evidence that Bluck (1980) postulated that the conglomerates were deposited in separate basins. With each conglomerate belonging to an upward fining sequence, each was thought to form at the foot of a fault scarp (see
3. There is ample evidence for post-Upper Old Red Sandstone N–S faulting, and this late-stage fracturing has controlled the orientation of the coastline and may have been responsible for the development of the Clyde Basin.
References
BLUCK, B.J. 1967. Deposition of some Upper Old Red Sandstone conglomerates in the Clyde area: a study in the significance of bedding. Scott. J. Geol. 3, 139–167.
BLUCK, B.J. 1978. Sedimentation in a late orogenic basin: the Old Red Sandstone of the Midland Valley of Scotland. In: Crustal evolution of NW Britain and adjacent regions (eds D.R. Bowes and B.E. Leake), Geol J. Spec. Issue 10, 249–278
BLUCK, B.J. 1980. Evolution of a strike-slip, fault-controlled basin, Upper Old Red Sandstone, Scotland. In: Sedimentation in oblique-slip mobile zones (eds Ballance, P.F. and Reading, H.G.). Internat. Assoc. Sedimentol. Spec. Publ. 4, 63–78.
BLUCK, B.J. 1980. Structure, generation and preservation of upward fining, braided stream cycles in the Upper Old Red Sandstone of Scotland. Trans. R. Soc. Edinb. Earth Sci. 71, 29–46.
BLUCK, B.J. 1986. Upward coarsening sedimentation units and fades lineages, Old Red Sandstone, Scotland. Trans. R. Soc. Edinb. Earth Sci. 77, 251–264.
DOWNIE, C and LISTER, T.R. 1969 The Sandy's Creek beds (Devonian) of Farland Head, Ayrshire. Scott. J. Geol. 5, 193–206.
PATERSON, E.M. 1952. Notes on the tectonics of the Greenock-Largs Uplands and the Cumbraes. Trans. geol.Soc. Glasg. 21, 430–435.